Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Bin Qi, Ming-Jie Zhang,* Dong-Yan Yuan, Shan-Shan Ma and Xiang-Qian Wang

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: mjzhangtju@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.100$
Data-to-parameter ratio $=10.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(2R,3R)-Diacetyltartaric acid anhydride

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{7}$, was synthesized from tartaric acid and acetic anhydride. The structure is stabilized by an intermolecular hydrogen bond from an H atom of a methyl group to a carbonyl O atom on the five-membered ring.

Comment

Diacetyltartaric acid anhydride, (I), is an important intermediate in the synthesis of anionic oil-in-water emulsifiers, such as the diacetyltartaric esters of monoglycerides (DATEMs), which are used throughout the world as improvers in bread-making (Köhler \& Grosch, 1999). This compound has also been used in studies of the kinetic acylation of various racemic alcohols and amines, a process that sometimes helps to separate racemates into their pure enantiomeric components (Mravik et al., 1996). Compound (I) was prepared by the reaction of tartaric acid and acetic anhydride (Ireland \& Thompson, 1979). The crystal structure determination of the title compound was carried out in order to elucidate its molecular conformation and is reported here.

(I)

The molecular structure of (I) is shown in Fig. 1. Atoms C3 and C 2 have distorted tetrahedral geometry, with the $\mathrm{C} 4-$ $\mathrm{C} 3-\mathrm{C} 2\left[103.49(16)^{\circ}\right]$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ [102.46 (15) ${ }^{\circ}$] angles deviating significantly from ideal tetrahedral values. Because they are in a five-membered ring, the $\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$ [108.04 (15) ${ }^{\circ}$] and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1\left[109.28(16)^{\circ}\right]$ angles are significantly less than the normal $\left(120^{\circ}\right)$ trigonal value, as are the C8-C7-O6 [110.5 (2) ${ }^{\circ}$] and $\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 4\left[110.4(2)^{\circ}\right]$ angles in the acetyl groups. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2) link a row of molecules into a zigzag chain along the b axis (Fig. 2). There are several short nonbonded approaches between carbonyl groups in this crystal structure, the shortest being O7‥C4, at 2.79 (2) A. Similar short approaches have been reported in other acid anhydride crystal structures; an O \cdots C approach of only $2.75 \AA$ was reported by Jefford et al. (1992).

Experimental

To a mixture of pulverized commercial tartaric acid ($10 \mathrm{~g}, 67 \mathrm{mmol}$) and acetic anhydride (22 ml) was added concentrated sulfuric acid

Received 6 January 2005 Accepted 16 March 2005 Online 25 March 2005
(1 ml), and the resulting solution was stirred at room temperature for 3 h . After the solution had been heated on a steam bath for a few minutes, the reaction was cooled in an ice bath, and the white crystalline product was collected by vacuum filtration on a medium frit. The filtercake was washed with benzene (5 ml) and dried in a vacuum desiccator over paraffin for three days, yielding pure crystalline diacetyltartaric anhydride (yield $13.2 \mathrm{~g}, 92 \%$; m.p. $406-408 \mathrm{~K}$). IR $\left(\mathrm{KBr}, \nu \mathrm{cm}^{-1}\right): 2940,1900,1826,1763,1380 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $):$ $\delta 2.22(s, 6 \mathrm{H}), 5.68(s, 2 \mathrm{H})$.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{7}$

$M_{r}=216.14$
Orthorhombic, ${ }_{\circ} 2_{1} 2_{1} 2_{1}$
$a=5.4066$ (7) \AA
$b=10.3363$ (14) \AA
$c=17.434(2) \AA$
$V=974.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.474 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.969, T_{\text {max }}=0.976$ 6584 measured reflections

Refinement

Refinement on F^{2}
Mo $K \alpha$ radiation
Cell parameters from 1835
\quad reflections
$\theta=2.3-21.9^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.100$
$S=1.07$
1381 reflections
138 parameters

1381 independent reflections 1093 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-5 \rightarrow 7$
$k=-13 \rightarrow 13$
$l=-22 \rightarrow 22$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0644 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

O2-C1	$1.176(2)$	O5-C5	$1.191(3)$
O3-C4	$1.175(2)$	O7-C7	$1.180(3)$
O1-C1-C2	$109.28(16)$	O1-C4-C3	$108.04(15)$
C3-C2-C1	$102.46(15)$	O4-C5-C6	$110.4(2)$
C2-C3-C4	$103.49(16)$	$\mathrm{O} 6-\mathrm{C} 7-\mathrm{C} 8$	$110.5(2)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-5.8(2)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$-10.9(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$19.7(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$22.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-24.66(19)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C8-H8A $\cdots \mathrm{O}^{\text {i }}$	0.96	2.54	$3.412(4)$	151
C6-H6C $\mathrm{O}^{\text {ii }}$	0.96	2.60	$3.528(4)$	162
C2-H2 $\mathrm{O}^{\text {iii }}$	0.98	2.60	$3.109(3)$	112
C3-H3 \cdots O7	0.98	2.24	$2.631(3)$	102
C2-H2 \cdots O5	0.98	2.27	$2.634(3)$	101

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $x+1, y, z$.
There is no firm chemical evidence for the assignment of the absolute configuration of this compound, which has probably undergone spontaneous resolution during crystallization. In the

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Figure 2
The crystal structure of (I), viewed along the a axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.
absence of significant anomalous dispersion effects, Friedel pairs were averaged. All H atoms were positioned geometrically (with $\mathrm{C}-$ $\mathrm{H}=0.96-0.98 \AA$) and were refined with riding constraints. For the methyl groups, $U_{\text {iso }}(\mathrm{H})$ values were set to $1.5 U_{\text {eq }}$ (carrier atom) and for the CH groups they were set to $1.2 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ireland, R. E. \& Thompson, W. J. (1979). J. Org. Chem. 44, 3041-3052.
Jefford, C. W., Bernardinelli, G., Wang, Y., Spellmeyer, D. C., Buda, A. \& Houk, K. N. (1992). J. Am. Chem. Soc. 114, 1157-1165.
Köhler, P. \& Grosch, W. (1999). J. Agric. Food. Chem. 47, 1863-1869.
Mravik, A., Böcskei, Z., Keszei, S., Elekes, F. \& Fogassy, E. (1996). Tetrahedron Asymmetry, 7, 1477-1484.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

